(ns foundations.computational.linguistics
(:require [reagent.core :as r]
[reagent.dom :as rd]
[clojure.zip :as z]
[clojure.pprint :refer [pprint]]
[clojure.string :refer [index-of]]
;[clojure.string :as str]
))
(enable-console-print!)
(defn log [a-thing]
(.log js/console a-thing))
(defn render-vega [spec elem]
(when spec
(let [spec (clj->js spec)
opts {:renderer "canvas"
:mode "vega"
:actions {
:export true,
:source true,
:compiled true,
:editor true}}]
(-> (js/vegaEmbed elem spec (clj->js opts))
(.then (fn [res]
(. js/vegaTooltip (vega (.-view res) spec))))
(.catch (fn [err]
(log err)))))))
(defn vega
"Reagent component that renders vega"
[spec]
(r/create-class
{:display-name "vega"
:component-did-mount (fn [this]
(render-vega spec (rd/dom-node this)))
:component-will-update (fn [this [_ new-spec]]
(render-vega new-spec (rd/dom-node this)))
:reagent-render (fn [spec]
[:div#vis])}))
;making a histogram from a list of observations
(defn list-to-hist-data-lite [l]
""" takes a list and returns a record
in the right format for vega data,
with each list element the label to a field named 'x'"""
(defrecord rec [category])
{:values (into [] (map ->rec l))})
(defn makehist-lite [data]
{
:$schema "https://vega.github.io/schema/vega-lite/v4.json",
:data data,
:mark "bar",
:encoding {
:x {:field "category",
:type "ordinal"},
:y {:aggregate "count",
:type "quantitative"}
}
})
(defn list-to-hist-data [l]
""" takes a list and returns a record
in the right format for vega data,
with each list element the label to a field named 'x'"""
(defrecord rec [category])
[{:name "raw",
:values (into [] (map ->rec l))}
{:name "aggregated"
:source "raw"
:transform
[{:as ["count"]
:type "aggregate"
:groupby ["category"]}]}
{:name "agg-sorted"
:source "aggregated"
:transform
[{:type "collect"
:sort {:field "category"}}]}
])
(defn makehist [data]
(let [n (count (distinct ((data 0) :values)))
h 200
pad 5
w (if (< n 20) (* n 35) (- 700 (* 2 pad)))]
{
:$schema "https://vega.github.io/schema/vega/v5.json",
:width w,
:height h,
:padding pad,
:data data,
:signals [
{:name "tooltip",
:value {},
:on [{:events "rect:mouseover", :update "datum"},
{:events "rect:mouseout", :update "{}"}]}
],
:scales [
{:name "xscale",
:type "band",
:domain {:data "agg-sorted", :field "category"},
:range "width",
:padding 0.05,
:round true},
{:name "yscale",
:domain {:data "agg-sorted", :field "count"},
:nice true,
:range "height"}
],
:axes [
{ :orient "bottom", :scale "xscale" },
{ :orient "left", :scale "yscale" }
],
:marks [
{:type "rect",
:from {:data "agg-sorted"},
:encode {
:enter {
:x {:scale "xscale", :field "category"},
:width {:scale "xscale", :band 1},
:y {:scale "yscale", :field "count"},
:y2 {:scale "yscale", :value 0}
},
:update {:fill {:value "steelblue"}},
:hover {:fill {:value "green"}}
}
},
{:type "text",
:encode {
:enter {
:align {:value "center"},
:baseline {:value "bottom"},
:fill {:value "#333"}
},
:update {
:x {:scale "xscale", :signal "tooltip.category", :band 0.5},
:y {:scale "yscale", :signal "tooltip.count", :offset -2},
:text {:signal "tooltip.count"},
:fillOpacity [
{:test "isNaN(tooltip.count)", :value 0},
{:value 1}
]
}
}
}
]
}))
(defn hist [l]
(-> l
list-to-hist-data
makehist
vega))
; for making bar plots
(defn list-to-barplot-data-lite [l m]
""" takes a list and returns a record
in the right format for vega data,
with each list element the label to a field named 'x'"""
(defrecord rec [category amount])
{:values (into [] (map ->rec l m))})
(defn makebarplot-lite [data]
{
:$schema "https://vega.github.io/schema/vega-lite/v4.json",
:data data,
:mark "bar",
:encoding {
:x {:field "element", :type "ordinal"},
:y {:field "value", :type "quantitative"}
}
})
(defn list-to-barplot-data [l m]
""" takes a list and returns a record
in the right format for vega data,
with each list element the label to a field named 'x'"""
(defrecord rec [category amount])
{:name "table",
:values (into [] (map ->rec l m))})
(defn makebarplot [data]
(let [n (count (data :values))
h 200
pad 5
w (if (< n 20) (* n 35) (- 700 (* 2 pad)))]
{
:$schema "https://vega.github.io/schema/vega/v5.json",
:width w,
:height h,
:padding pad,
:data data,
:signals [
{:name "tooltip",
:value {},
:on [{:events "rect:mouseover", :update "datum"},
{:events "rect:mouseout", :update "{}"}]}
],
:scales [
{:name "xscale",
:type "band",
:domain {:data "table", :field "category"},
:range "width",
:padding 0.05,
:round true},
{:name "yscale",
:domain {:data "table", :field "amount"},
:nice true,
:range "height"}
],
:axes [
{ :orient "bottom", :scale "xscale" },
{ :orient "left", :scale "yscale" }
],
:marks [
{:type "rect",
:from {:data "table"},
:encode {
:enter {
:x {:scale "xscale", :field "category"},
:width {:scale "xscale", :band 1},
:y {:scale "yscale", :field "amount"},
:y2 {:scale "yscale", :value 0}
},
:update {:fill {:value "steelblue"}},
:hover {:fill {:value "green"}}
}
},
{:type "text",
:encode {
:enter {
:align {:value "center"},
:baseline {:value "bottom"},
:fill {:value "#333"}
},
:update {
:x {:scale "xscale", :signal "tooltip.category", :band 0.5},
:y {:scale "yscale", :signal "tooltip.amount", :offset -2},
:text {:signal "tooltip.amount"},
:fillOpacity [
{:test "isNaN(tooltip.amount)", :value 0},
{:value 1}
]
}
}
}
]
}))
(defn barplot [l m]
(vega (makebarplot (list-to-barplot-data l m))))
; now, for tree making
;(thanks to Taylor Wood's answer in this thread on stackoverflow:
; https://stackoverflow.com/questions/57911965)
(defn count-up-to-right [loc]
(if (z/up loc)
(loop [x loc, pops 0]
(if (z/right x)
pops
(recur (z/up x) (inc pops))))
0))
(defn list-to-tree-spec [l]
""" takes a list and walks through it (with clojure.zip library)
and builds the record format for the spec needed to for vega"""
(loop [loc (z/seq-zip l), next-id 0, parent-ids [], acc []]
(cond
(z/end? loc) acc
(z/end? (z/next loc))
(conj acc
{:id (str next-id)
:name (str (z/node loc))
:parent (when (seq parent-ids)
(str (peek parent-ids)))})
(and (z/node loc) (not (z/branch? loc)))
(recur
(z/next loc)
(inc next-id)
(cond
(not (z/right loc))
(let [n (count-up-to-right loc)
popn (apply comp (repeat n pop))]
(some-> parent-ids not-empty popn))
(not (z/left loc))
(conj parent-ids next-id)
:else parent-ids)
(conj acc
{:id (str next-id)
:name (str (z/node loc))
:parent (when (seq parent-ids)
(str (peek parent-ids)))}))
:else
(recur (z/next loc) next-id parent-ids acc))))
(defn maketree [w h tree-spec]
""" makes vega spec for a tree given tree-spec in the right json-like format """
{:$schema "https://vega.github.io/schema/vega/v5.json"
:data [{:name "tree"
:transform [{:key "id" :parentKey "parent" :type "stratify"}
{:as ["x" "y" "depth" "children"]
:method {:signal "layout"}
:size [{:signal "width"} {:signal "height"}]
:type "tree"}]
:values tree-spec
}
{:name "links"
:source "tree"
:transform [{:type "treelinks"}
{:orient "horizontal"
:shape {:signal "links"}
:type "linkpath"}]}]
:height h
:marks [{:encode {:update {:path {:field "path"} :stroke {:value "#ccc"}}}
:from {:data "links"}
:type "path"}
{:encode {:enter {:size {:value 50} :stroke {:value "#fff"}}
:update {:fill {:field "depth" :scale "color"}
:x {:field "x"}
:y {:field "y"}}}
:from {:data "tree"}
:type "symbol"}
{:encode {:enter {:baseline {:value "bottom"}
:font {:value "Courier"}
:fontSize {:value 14}
:angle {:value 0}
:text {:field "name"}}
:update {:align {:signal "datum.children ? 'center' : 'center'"}
:dy {:signal "datum.children ? -6 : -6"}
:opacity {:signal "labels ? 1 : 0"}
:x {:field "x"}
:y {:field "y"}}}
:from {:data "tree"}
:type "text"}]
:padding 5
:scales [{:domain {:data "tree" :field "depth"}
:name "color"
:range {:scheme "magma"}
:type "linear"
:zero true}]
:signals [{:bind {:input "checkbox"} :name "labels" :value true}
{:bind {:input "radio" :options ["tidy" "cluster"]}
:name "layout"
:value "tidy"}
{:name "links"
:value "line"}]
:width w}
)
(defn tree-depth
"get the depth of a tree (list)"
[list]
(if (seq? list)
(inc (apply max 0 (map tree-depth list)))
0))
(defn tree
"plot tree using vega"
[list]
(let [spec (list-to-tree-spec list)
h (* 30 (tree-depth list))]
(vega (maketree 700 h spec))))
(def categories '(N V Adj Adv P stop))
(def vocabulary '(Call me Ishmael))
(defn logsumexp [& log-vals]
(let [mx (apply max log-vals)]
(+ mx
(Math/log2
(apply +
(map (fn [z] (Math/pow 2 z))
(map (fn [x] (- x mx))
log-vals)))))))
(defn flip [p]
(if (< (rand 1) p)
true
false))
(defn sample-categorical [outcomes params]
(if (flip (first params))
(first outcomes)
(sample-categorical (rest outcomes)
(normalize (rest params)))))
(defn score-categorical [outcome outcomes params]
(if (empty? params)
(throw "no matching outcome")
(if (= outcome (first outcomes))
(Math/log2 (first params))
(score-categorical outcome (rest outcomes) (rest params)))))
(defn normalize [params]
(let [sum (apply + params)]
(map (fn [x] (/ x sum)) params)))
(defn sample-gamma [shape scale]
(apply + (repeatedly
shape (fn []
(- (Math/log2 (rand))))
)))
(defn sample-dirichlet [pseudos]
(let [gammas (map (fn [sh]
(sample-gamma sh 1))
pseudos)]
(normalize gammas)))
(defn update-context [order old-context new-symbol]
(if (>= (count old-context) order)
(throw "Context too long!")
(if (= (count old-context) (- order 1))
(concat (rest old-context) (list new-symbol))
(concat old-context (list new-symbol)))))
(defn hmm-unfold [transition observation order context current stop?]
(if (stop? current)
(list current)
(let [new-context (update-context
order
context
current)
nxt (transition new-context)]
(cons [current (observation current)]
(hmm-unfold
transition
observation
n-gram-order
new-context
nxt
stop?)))))
(defn all-but-last [l]
(cond (empty? l) (throw "bad thing")
(empty? (rest l)) '()
:else (cons (first l) (all-but-last (rest l)))))
Over the last chapters, we studied the problem of parsing for
HMMs/FSAs—that is, the problem of inferring the hidden state/category
sequence(s) underlying some observed sentence. We now turn to another,
more complex problem of inductive inference: parameter estimation or
parameter learning.
Recall that an HMM is parameterize by two sets of probability
distributions: transition distributions, which we wrote
\(\vec{\theta}_{T,c}\) and observation
distributions, which we wrote \(\vec{\theta}_{O,c}\). Let’s use
\(\mathbf{\theta}_T\) to refer to the whole set of such transition
distributions—one for each state/category—and
\(\mathbf{\theta}_O\) to refer to the whole set of such
observation/emission distributions, one for each state/category as well.
The parameter
estimation or learning problem for HMMs is to rank or choose these
distributions given some observed corpus of sentences
\(\mathbf{C}\).
Recall that in the maximum likelihood formulation of the problem, we
wish to find those parameters which maximize the probability of the
corpus. The marginal probability of a corpus \(\mathbf{C}\)
given (the parameters of) an HMM is given by the
following expression.
\[\begin{align}
\Pr(\mathbf{C} \mid \mathbf{\theta}_T, \mathbf{\theta}_O) &=&
\prod_{\vec{w} \in \mathbf{C} } \sum_{\vec{c}} \Pr(\vec{w},\vec{c} \mid
\mathbf{\theta}_T, \mathbf{\theta}_O) \\
\Pr(\mathbf{C} \mid \mathbf{\theta}_T, \mathbf{\theta}_O) &=&
\prod_{\vec{w} \in \mathbf{C} } \sum_{\vec{c}} \prod_{i=1}^{|\vec{w}|}
\Pr(c^{(i)} | c^{(i-1)}, \vec{\theta}_{T,c^{(i-1)}}) \Pr(w^{(i)} | c^{(i)}, \vec{\theta}_{O,c^{(i)}})
\end{align}\]
In Maximum Likelihoood, we discussed the
maximum likelihood solution for a categorical model and showed how it
was related to the counts of each outcome in the dataset. Here,
however, we are summing over the sequences of categories. We don’t
know the true counts of each categorical outcome, because they
relevant information is hidden!
Similarly, in the Bayesian formulation of the problem we seek the
posterior distribution over parameters given the corpus.
\[\begin{align}
\Pr(\mathbf{\theta}_T, \mathbf{\theta}_O \mid \mathbf{C} )&=&
\frac{\Pr(\mathbf{C} \mid \mathbf{\theta}_T, \mathbf{\theta}_O) \Pr(\mathbf{\theta}_O )\Pr(\mathbf{\theta}_T )}{\int_{\mathbf{\theta}_T}
\int_{\mathbf{\theta}_O} \Pr(\mathbf{C} \mid \mathbf{\theta}_T, \mathbf{\theta}_O
) \Pr(\mathbf{\theta}_O )\Pr(\mathbf{\theta}_T )\,d\vec{\theta}_O\,d\vec{\theta}_T} \\
\Pr(\mathbf{\theta}_T, \mathbf{\theta}_O \mid \mathbf{C} ) &=&
\frac{\Pr(\mathbf{\theta}_O )\Pr(\mathbf{\theta}_T )\prod_{\vec{w} \in \mathbf{C} } \sum_{\vec{c}} \Pr(\vec{w},\vec{c} \mid
\mathbf{\theta}_T, \mathbf{\theta}_O) }{\int_{\mathbf{\theta}_T}
\int_{\mathbf{\theta}_O} \prod_{\vec{w} \in \mathbf{C} } \sum_{\vec{c}} \Pr(\vec{w},\vec{c} \mid
\mathbf{\theta}_T, \mathbf{\theta}_O) \Pr(\mathbf{\theta}_O )\Pr(\mathbf{\theta}_T )\,d\vec{\theta}_O\,d\vec{\theta}_T} \\
\end{align}\]
Note once again we have to evaluate the integrals in the denominator
over the sum over sequences of categories. It is not clear how to do
this!
In the next several lectures, we will examine these problems in much
greater detail and learn several new techniques for handling them via
approximate inference.
← 33 Exact Sampling and Scoring
35 Expectations →